Las funciones
matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de
una llamada telefónica que depende de su duración, o el costo de enviar una
encomienda que depende de su peso.
Correspondencia entre las personas que trabajan en una oficina y su peso
expresado en kilos
Conjunto X
|
Conjunto Y
|
Ángela
|
55
|
Pedro
|
88
|
Manuel
|
62
|
Adrián
|
88
|
Roberto
|
90
|
Cada persona (perteneciente al conjunto X o dominio) constituye lo que se
llama la entrada o variable independiente. Cada peso (perteneciente al conjunto
Y o codominio) constituye lo que se llama la salida o variable dependiente.
Notemos que una misma persona no puede tener dos pesos distintos. Notemos
también que es posible que dos personas diferentes tengan el mismo peso.
Ejemplo 2Correspondencia entre el conjunto de los números reales (variable independiente) y el mismo conjunto (variable dependiente), definida por la regla "doble del número más 3".
x -------> 2x + 3 o bien f(x) = 2x + 3
Algunos pares de números que se corresponden por medio de esta regla son:
Conjunto X
|
Conjunto Y
|
Desarrollo
|
− 2
|
− 1
|
f(−2) = 2(−2) + 3 = −4 + 3 = − 1
|
− 1
|
1
|
f(−1) = 2(−1) + 3 = −2 + 3 = 1
|
0
|
3
|
f(0) = 2(0) + 3 = 0 + 3 = 3
|
1
|
5
|
f(1) = 2(1) + 3 = 2 + 3 = 5
|
2
|
7
|
f(2) = 2(2) + 3 = 4 + 3 = 7
|
3
|
9
|
f(3) = 2(3) + 3 = 6 + 3 = 9
|
4
|
11
|
f(4) = 2(4) + 3 = 8 + 3 = 11
|
.
No hay comentarios:
Publicar un comentario