miércoles, 6 de marzo de 2013

PROBABILIDAD


La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

 

Experimentos deterministas


Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Ejemplo


Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas, que la piedra bajará. Si la arrojamos hacia arriba, sabemos que subirá durante un determinado intervalo de tiempo; pero después bajará.

Experimentos aleatorios


Son aquellos en los que no se puede predecir el resultado, ya que éste depende del azar.

Ejemplos


Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz.

Si lanzamos un dado tampoco podemos determinar el resultado que vamos a obtener.

Teoría de probabilidades


La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro. Con este fin, introduciremos algunas definiciones:

Suceso


Es cada uno de los resultados posibles de una experiencia aleatoria.

Al lanzar una moneda salga cara.

Al lanzar una moneda se obtenga 4.

Espacio muestral


Es el conjunto de todos los posibles resultados de una experiencia aleatoria, lo representaremos por E (o bien por la letra griega Ω).

Espacio muestral de una moneda:

E = {C, X}.

Espacio muestral de un dado:

E = {1, 2, 3, 4, 5, 6}.

Suceso aleatorio


Suceso aleatorio es cualquier subconjunto del espacio muestral.

Por ejemplo al tirar un dado un suceso sería que saliera par, otro, obtener múltiplo de 3, y otro, sacar 5.

Ejemplo


Una bolsa contiene bolas blancas y negras. Se extraen sucesivamente tres bolas. Calcular:

1. El espacio muestral.

E = {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b); (n, n,n)}

2. El suceso A = {extraer tres bolas del mismo color}.

A = {(b,b,b); (n, n,n)}

3. El suceso B = {extraer al menos una bola blanca}.

B= {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b)}

4. El suceso C = {extraer una sola bola negra}.

C = {(b,b,n); (b,n,b); (n,b,b)}

 

 

No hay comentarios:

Publicar un comentario